Leechpool Primary School Calculation Policy

Next Review: December 2024

Leechpool Primary School

Leechpool Lane

Horsham

West Sussex

RH13 6AG

"Tell me and I forget. Teach me and I remember. Involve me and I learn." – Benjamin Franklin

This policy is a framework of expectations for how children should be taught to develop their understanding of the 4 operations at Leechpool. It has been developed to support a teaching for mastery approach. Solid mathematical understanding in every child at Leechpool is underpinned by each child's journey through the concrete \rightarrow pictorial \rightarrow abstract (written methods). This policy is a guide through the appropriate progression of written calculation and if at any time a child is struggling with the abstract a child should revert to the pictorial or concrete to aid their solving of problems, where appropriate. It is vital that children are using a strategy that is appropriate to their **stage of learning**. As a result this may result in them using a strategy that is found in a different age group.

Foundations- Five Principles of Number

Principle	Success criteria	Context	
	Can say some number names when asked to count.		
	Can join in with saying number names in order.	Counting objects as they are put out on a table for art,	
Stable order principle	Can say number names in order to 10 starting with 0.	role play, games Counting children in a group. Counting around a group up to a target number.	
	Can say number names in order to 20 starting with 0.		
	Can point to objects as a number name is being said.	Moving counting chiests from a not into a tub as they are	
One to one principle	Can move objects as the number names are being said one at a time.	Moving counting objects from a pot into a tub as they are counted. Holding objects in hand and placing them down on the table one by one saying the number each time.	
	Can point to each object (or move it) only once as it is being counted.	Counting beads along a bead string.	
Cardinal principle	Can respond to "how many?" by saying number names in order and knowing last number said is how many.	Using pointing or moving strategy count sets of counters,	
	Can repeat how many are in the set without having to recount it.	pencils, paperclip, leaves, bean bags	
Order irrelevance principle	Can say how many are in a set despite having the set rearranged between requests.	Practise making and moving sets of objects without adding or taking any away. Make patterns and pictures using counted sets. Make sets using objects of mixed varying sizes.	
	Can count a series of claps, coin drops (to 10/20).	Practise saying number names in order to a signal such as	
Abstraction principle	Can count a series of own actions, e.g. jumps, clap?	a clap, wave, nod Count actions as well as objects, count words on a page, words spoken, foot tapped Play "my turn your turn" for showing a target number.	

Place value should only be taught once the five principles of number are secure.

Vocabulary

Children should be introduced to the correct mathematical language at the earliest opportunity. The following language can be used within calculations.

Addend- a number which is added to another

Sum/Total- the total amount resulting from the addition of two or more numbers, amounts, or items.

Minuend- a quantity or number from which another is to be subtracted.

Subtrahend- a quantity or number to be subtracted from another.

Difference- the result of subtracting one number from another.

Multiplicand- a quantity which is to be multiplied by another.

Multiplier- a quantity by which a given number is to be multiplied.

Product- the result of multiplying.

Dividend- a number to be divided by another number.

Divisor- a number by which another number is to be divided.

Quotient- a result obtained by dividing one quantity by another.

Addend + addend = sum or total Minuend – subtrahend = difference

Multiplicand x multiplier = product

Dividend ÷ divisor = quotient

Subject specific language can be found at the end of each calculation section. *Posters for all four operations can be found in appendix 1.*

Resources

A range of resources may be used however the following should be available to all children.

Pictorial jottings- The following representations should be used for pictorial representations by teachers and by children when working in their books.

Written Methods for Addition

YEAR GROUP & RELEVANT OBJECTIVES	STRATEGY	CONCRETE	PICTORIAL	ABSTRACT / WRITTEN
Y1: Add one-digit numbers to 20 including 0 Y1: Add two-digit numbers to 20 Y2: Add numbers using concrete objects and pictorial representations, including adding three one-digit numbers	Aggregation – combining two parts to make a whole	3+4=	Fart-whole model where the numbers are represented by dots	4 + 3 = 7 7 4 3

Y1: Add one-digit numbers to 20 including 0 Y1: Add two-digit numbers to 20 Y2: Add numbers using concrete objects and pictorial representations,	Augmentation – increasing a quantity by an amount (starting with the largest number and counting on)		A Par model which encourages children to	4 + 2 = 6 5 The abstract number line.
including adding three one-digit numbers			count on, rather than count all	
		Possible resources: bead string, number lines with cubes or numicon	Counting on using a	
			number line, beginning at	
			the largest number and	
			counting on in ones or in one jump	
Y1: Add one-digit numbers to 20 including 0 Y1: Add two-digit numbers to 20	Regrouping – i.e. to make 10			Children develop an understanding of equality and look for links between numbers.
Y2: Add numbers using concrete objects and pictorial representations,				6 + [] = 11 6 + 5 = 5 + []
including adding three one-digit numbers		Possible resources: ten	Children draw their own ten frames and dots	6 + 5 = [] + 4
		frames and cubes, numicon		11 = [] + 6

5 | Calculation Policy, December 2023

Y2: Add numbers using concrete objects and pictorial representations, including a two-digit number and ones	TO + O – developing understanding of place value and partitioning Step 1: without exchange Step 2: with exchange	Possible resources: base 10	10s 1s 111 1s <td< th=""><th>$\begin{array}{c} 41+8 \\ 41+8 \\ 40+9=49 \\ 40+9=40$</th></td<>	$ \begin{array}{c} 41+8 \\ 41+8 \\ 40+9=49 \\ 40+9=40$
Y2: Add numbers using concrete objects and pictorial representations, including a two-digit number and tens Y2: Add numbers using concrete objects and pictorial representations, including two two- digit numbers	TO + TO – continue to develop understanding of place value and partitioning Step 1: without exchange Step 2: with exchange	IOS IS 0 1 0 1 0 1 0 1 1 1 <t< td=""><td>with lines and ones with xs $i = \frac{10^{3}}{6}$ Children draw a place value grid and represent tens with lines and ones with xs, showing exchange with circles and arrows $i = \frac{10^{3}}{6}$ Using an empty number line, counting in jumps of tens and ones</td><td>Looking for ways to make 10. 36 + 25 = 30 + 20 = 50 5 + 5 = 10 50 + 10 + 1 = 61 36 +25 61 1</td></t<>	with lines and ones with xs $i = \frac{10^{3}}{6}$ Children draw a place value grid and represent tens with lines and ones with xs, showing exchange with circles and arrows $i = \frac{10^{3}}{6}$ Using an empty number line, counting in jumps of tens and ones	Looking for ways to make 10. 36 + 25 = 30 + 20 = 50 5 + 5 = 10 50 + 10 + 1 = 61 36 +25 61 1

Y3: Add numbers with up to three digits, using formal	HTO + TO or HTO + HTO			243
 written methods of columnar addition Y4: Add numbers with up to 4 digits using the formal written methods of columnar addition where appropriate Y5: Add whole numbers with more than 4 digits, including using formal written methods (columnar addition) 	(with multiple exchanges) Any number of digits + any number of digits, (with multiple exchanges) Adding decimals Adding more than 2 numbers	100s 10s 1s 0 0 0 0 6 1 1 1 Possible resources: place value grid, base 10, place value counters 10, place value counters 10, place value counters	Children draw a place value grid and represent tens with lines and ones with dots, showing exchange with circles and arrows	+368 611 1 1

Key vocabulary for addition:

sum, total, parts and wholes, plus, add, altogether, more, 'is equal to', 'is the same as, addend

Written Methods for Subtraction

YEAR GROUP & RELEVANT OBJECTIVES	STRATEGY	CONCRETE	PICTORIAL	ABSTRACT / WRITTEN
 Y1: Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7= ☑ - 9. Y2: Solve problems with addition and subtraction : using concrete objects and pictorial representations, including those involving numbers, quantities and measures, applying their increasing knowledge of mental and written methods. 		4-3=1 ↓↓↓↓↓↓↓↓↓↓ Possible resources: numicon, bean bags, cubes, tens frame	Children draw resources and cross out	$ \begin{array}{c} 4 - 3 = \\ - 4 - 3 \\ \hline 3 & ? \\ \hline 4 \\ \hline 7 & 3 \\ \hline 7 & 3 \end{array} $

Y1: Subtract one digit and two- digit numbers Y2: Add and subtract numbers using concrete objects, pictorial representations and mentally	Reduction Start at and count back	6-2=4 1 2 3 4 5 6 7 8 9 10 Possible resources: cubes or number tracks	Draw what they see	Children represent on a numberline or track, progressing to empty line 1 1 2 3 4 5 6 7 8 9 10
Y1: Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7= ☑ - 9. Y2: Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100	Comparison Finding the difference between two numbers	8-5=3 ? Possible resources: cubes, base 10, numicon	Children draw the cubes or objects, bar model can also be used to show what they need to calculate	Find the difference between 8 and 5. 8 – 5, the difference is Children to explore why 9 - 6 = 8 – 5 = 7 – 4 have the same difference.
 Y1: Represent and use number bonds and related subtraction facts within 20 Y2: Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 	Making 10 (bridging 10)	14 – 5 = 9 → → → → → → → → → → → → → → → → → →	Children represent 10s frame pictorially. Children should be encouraged to explain what they have done	Children demonstrate partitioning of subtrahend 14 - 5 = 9 4 - 1 14 - 4 = 10 10 - 1 = 9

 Y1: Subtract one digit and two- digit numbers Y2: Add and subtract numbers using concrete objects, pictorial representations and mentally Y3: add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction 	Column method T U	48 – 7 = 41 10s 1s 4 10s 1s 4 10s 1s 4 1 10s 1s 4 1 10s 1s 4 1 10s 1s 4 1 1 1 1 1 1 1 1 1 1 1 1 1	Children represent base 10 with I and x IOs Is IIIII IIII 4 I	Children use column method and apply number facts to 10 4 8 - 7 4 7 4 1
 Y3: add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction Y4: add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate Y5: add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) 	Column method (with exchanging, decomposition) T U	41 - 26 = 15 $10s 1s 10s 1s 10s 1s 10s 1s 1$	Children draw with I and x, remembering to show exchange	Formal column method to be used (CHILDREN MUST SHOW UNDERSTANDING OF DECOMPOSTION AND THAT THEY still have 41 as 41 = 30 + 11) 344 1 2 6 1 5

Key vocabulary for subtraction:

take away, less than, the difference, subtract, minus, fewer, decrease, subtrahend, minuend

By the end of the year	<u><u>1</u></u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>
-children are able to derive and recall	 number pairs with a total of 10, e.g. 3 + 7, or what to add to a single-digit number to make 10, e.g. 3 + 2 = 10 addition facts for totals to at least 5, e.g. 2 + 3, 4 + 3 addition doubles for all numbers to at least 10, e.g. 8 + 8 	 addition and subtraction facts for all numbers up to at least 10, e.g. 3 + 4, 8 - 5 number pairs with totals to 20 all pairs of multiples of 10 with totals up to 100, e.g. 30 + 70, or 60 + 2 = 100 what must be added to any two-digit number to make the next multiple of 10, e.g. 52 + 2 = 60 addition doubles for all numbers to 20, e.g. 17 + 17 and multiples of 10 to 50, e.g. 40 + 40 	 addition and subtraction facts for all numbers to 20, e.g. 9 + 8, 17 – 9, drawing on knowledge of inverse operations sums and differences of multiples of 10, e.g. 50 + 80, 120 – 90 pairs of two-digit numbers with a total of 100, e.g. 32 + 68, or 32 + 2 = 100 addition doubles for multiples of 10 to 100, e.g. 90 + 90 	 sums and differences of pairs of multiples of 10, 100 or 1000 addition doubles of numbers 1 to 100, e.g. 38 + 38, and the corresponding halves what must be added to any three-digit number to make the next multiple of 100, e.g. 521 + 2 = 600 pairs of fractions that total 1 	 sums and differences of decimals, e.g. 6.5 + 2.7, 7.8 - 1.3 doubles and halves of decimals, e.g. half of 5.6, double 3.4 what must be added to any four-digit number to make the next multiple of 1000, e.g. 4087 + ? = 5000 what must be added to a decimal with units and tenths to make the next whole number, e.g. 7.2 + ? = 8 	 addition and subtraction facts for multiples of 10 to 1000 and decimal numbers with one decimal place, e.g. 650 + 2 = 930, 2 - 1.4 = 2.5 what must be added to a decimal with units, tenths and hundredths to make the next whole number, e.g. 7.26 + 2 = 8

 single-digit to or from 10, and add a multiple of 10 to a add or subtract a single-digit number, e.g. 10 + 7, 7 + 30 add or subtract a single-digit number, e.g. 10 + 7, 7 + 30 add or subtract a single-digit number, e.g. 18 + 16, 60 + 70 add near doubles, e.g. 6 + 7 add near doubles, e.g. 6 + 7 add or subtract a single-digit number, e.g. 23 + 5, 52 - 7 add or subtract a multiple of 10 to or from any two-digit number, e.g. 23 + 5, 52 - 7 add or subtract a multiple of 10 to or from any two-digit number, e.g. 27 + 60, 72 - 50 add 9, 19, 29, or 11, 21, 31, add near doubles, e.g. 13 + 14, 39 + 40 two-digit numbers, e.g. 34 + 65, 68 - 35 add near doubles, e.g. 38 + 37 add or subtract two- digit or three-digit multiples of 10, e.g. 120 - 40, 140 + 150, 370 - 180 find th difference between near multiples of 100, e.g. 607 - 588, or of 1000, e.g. 6070 - 4087 add or subtract any pairs of decimal fractions each with units and tenths, e.g. 5.7 + 2.5, 6.3 - 4.8 partition: count or back in minutes ar hours, bridging through 60 (analop and digital times)

-understand when to	reorder numbers	reorder numbers	reorder numbers	• count on or back in	• add or subtract pairs	• count on or back in
be able to apply	when adding, e.g. put	when adding	when adding	hundreds, tens and	of decimals with	hundreds, tens, ones,
	the larger number	 partition: bridge 	 identify pairs 	ones	units, tenths or	tenths and
	first	through 10 and	totalling 10 or	 partition: add tens 	hundredths, e.g. 0.7	hundredths
	• count on or back in	multiples of 10 when	multiples of 10	and ones separately,	+ 3.38	 use knowledge of
	ones, twos or tens	adding and	 partition: add tens 	then recombine	 find doubles of 	place value and
	 partition small 	subtracting	and ones separately,	 partition: subtract 	decimals each with	related calculations,
	numbers, e.g. 8 + 3 =	 partition and 	then recombine	tens and then ones,	units and tenths, e.g.	e.g. 680 + 430, 6.8 +
	8 + 2 + 1	combine multiples of	• partition: count on in	e.g. subtracting 27 by	1.6 + 1.6	4.3, 0.68 + 0.43 can
	 partition and 	tens and ones	tens and ones to find	subtracting 20 then 7	 add near doubles of 	all be worked out
	combine tens and	 use knowledge of 	the total	 subtract by counting 	decimals, e.g. 2.5 +	using the related
	ones	pairs making 10	• partition: count on or	up from the smaller	2.6	calculation 68 + 43
	• partition: double and	 partition: count on in 	back in tens and ones	to the larger number	 add or subtract a 	 use knowledge of
	adjust, e.g. 5 + 6 = 5 +	tens and ones to find	to find the difference	 partition: add or 	decimal with units	place value and of
	5 + 1	the total	 partition: add or 	subtract a multiple of	and tenths, that is	doubles of two-digit
		 partition: count on or 	subtract 10 or 20 and	10 and adjust,	nearly a whole	whole numbers
		back in tens and ones	adjust	• e.g. 56 + 29 = 56 + 30	number,	• partition: double and
		to find the difference	 partition: double and 	– 1, or 86 – 38 = 86 –	• e.g. 4.3 + 2.9, 6.5 -	adjust
		 partition: add a 	adjust	40 + 2	3.8	 partition: add or
		multiple of 10 and	 partition: count on or 	 partition: double and 		subtract a whole
		adjust by 1	back in minutes and	adjust		number and adjust,
		 partition: double and 	hours, bridging	 use knowledge of 		e.g. 4.3 + 2.9 = 4.3 +
		adjust	through 60 (analogue	place value and		3 – 0.1, 6.5 – 3.8 =
			times)	related calculations,		6.5 – 4 + 0.2
				e.g. work out 140 +		partition: count on or
				150 = 290 using 14 +		back in minutes and
				15 = 29		hours, bridging
				 partition: count on or 		through 60 (analogue
				back in minutes and		and digital times, 12-
				hours, bridging		hour and 24-hour
				through 60 (analogue		clock)
				and digital times)		

Written Methods for Multiplication

YEAR GROUP & RELEVANT OBJECTIVES	STRATEGY	CONCRETE	PICTORIAL	ABSTRACT / WRITTEN
 Y1: Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Y2: Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×), division (÷) and equals (=) signs. 	Repeated addition	3 x 4 4+4+4 Ther are 3 equal groups with 4 in each group.	Children represent physical resources in a bar model	3 x 4= 12 4+4+4= 12
Y1: Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and	Repeated addition on a number line	3 x 4	Pictorial representation alongside number line	Abstract showing jumps of 4 3 x 4= 12

arrays with the support of the teacher. Y2: Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.				
Y1: Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Y2: Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.	Commutative Law Key vocab: columns and rows (it is important to spend time ensuring children know what each one is) Column= Column= Rows=	2 x 5 = 5 x 2 2 lots of 5 5 lots of 2 Counters and Unifix can be used	Children represent arrays pictorially	Children are able to write a range of calculations based upon an array Eg. 10 = 2 x 5 5 x 2 = 10 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5

Y3: write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two- digit numbers times one-digit numbers, using mental and progressing to formal written methods Y4: solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m	Partition to multiply	4 x 15 Image: A gradient of the second sec	Children represent pictorially	Children work out using jottings 4×15 10 5 10 \times 4 = 40 $5 \times$ 4 = 20 40 + 20 = 60 Jottings can also be represented on a numberline 10×4 10×4
--	-----------------------	---	--------------------------------	---

Y4: multiply two- digit and three-digit numbers by a one- digit number using formal written layout Y5: multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers Y6: multiply multi- digit numbers up to 4 digits by a two- digit whole number using the formal written method of long multiplication	Formal column method	Shown using place value counters 3 x 23	Children represent counters or base10 pictorially 103 15 00 000 00 000 00 000 6 9	Children record partitioning before moving onto formal method 3×23 $3 \times 20 = 60$ $\land 3 \times 3 = 9$ 20 3 $60 + 9 = 6923\times 369$
Y4: multiply two-digit and three-digit numbers by a one-digit number using formal	Formal column method (exchanging across place value columns)	6 x 23	Children represent exchanging pictorially	Formal written method 6 x 23 =
written layout Y5: multiply numbers up to 4 digits by a one- or two-digit number using a formal written			100s 10s 1s	23
method, including long multiplication for two- digit numbers Y6: multiply multi-digit numbers up to 4 digits by a two-digit whole		100s 10s 1s	000000000000000000000000000000000000000	<u>× 6</u> 138
number using the formal written method of long multiplication		Place value counters	1 3 8	

Key vocabulary for multiplication:

double, times, multiplied by, the product of, groups of, lots of, equal groups

Written Methods for Division

YEAR GROUP & RELEVANT OBJECTIVES	STRATEGY	CONCRETE	PICTORIAL	ABSTRACT / WRITTEN
 Y1: Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Y2: Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. 	Equal Sharing	6÷2	Children to represent pictorially using the bar model	6÷2=3 3 3 Children to be encouraged to make link with 2 times tables

Y1: Solve one-step problems involving	Inverse of multiplication		Children to represent	Children represent the
multiplication and	(repeated subtraction)		pictorially	equal groups on a number
division, by		Base10 above a ruler		line
calculating the		6÷2	-2 -2 -2	-2 -2 -2
answer using		-2 -2 -2	$\sim \sim \sim$	
concrete objects, pictorial			1001001001	0 1 2 3 4 5 6
representations and			0 2 + 0	3 groups
arrays with the		0 1 2 3 4 5 6 7 8 9 10		0
support of the		and the states in the short details have been		
teacher.		000		
Y2: Calculate				
mathematical		GGC		
statements for		Should Should Should		
multiplication and				
division within the				
multiplication tables				
and write them		3 groups of 2		
using the				
multiplication (×),				
division (÷) and				
equals (=) signs.				

Y3: write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two- digit numbers times one-digit numbers, using mental and progressing to formal written methods Y4: use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers Y5: divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	Grouping (with remainders)	Lollipop sticks can be used to make whole shapes (eg dividing by 4 would be squares, 3 would be triangles) 13 ÷ 4 =	Children represent lollipop sticks pictorially with lines There are 3 whole squares with 1 left over.	13÷4 = 3 remainder 1 Encourage children to use their times tables facts. '3 groups of 4 with 1 left over' ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
---	-------------------------------	--	--	---

Y4: use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers	Sharing With place value counters	$42 \div 3 = 14$	Children draw place value counters	Children write process of calculations they have carried out $42 \div 3$ 42 = 30 + 12 $30 \div 3 = 10$ $12 \div 3 = 4$ 10 + 4 = 14
 Y5: divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context Y6: divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context 	Short Division (grouping) Using place value counters to group	 615÷5 100s 10s 1s 10s 1s 10s 1s 10s 1s 10s 1s 10s 1s 10s 1s 10s 10s 10s 10s 10s 10s 10s 10s 11s 11s<td>Children represent counters pictorially</td><td>Children do calculation using the short division scaffold. 123 5 6¹1¹5</td>	Children represent counters pictorially	Children do calculation using the short division scaffold. 123 5 6 ¹ 1 ¹ 5

Y5: divide numbers	Long division (grouping)	2544 ÷ 12	2544 ÷ 12
up to 4 digits by a one-digit number using the formal	Using place value counters	(children can represent pictorally, however this can become very messy due to the number of exhanges. It is often easier to move straight to the abstract on this occasion)	
written method of short division and interpret remainders appropriately for the context		1000s100s10s1sImage: Section of the	12 2544 24
Y6: divide numbers up to 4 digits by a two-digit whole number using the formal written method of long		1000s 100s 10s 1s We can group 24 hundreds into groups of 12 which leaves with 1 hundred. 1000s 10s 1s	$ \begin{array}{r} 1 \\ 0 2 1 \\ 12 \hline 2544 \\ \underline{24} \\ 14 \\ \underline{12} \\ 2 \end{array} $
division, and interpret remainders as whole number remainders, fractions, or by rounding, as		Image: Second	$12 \boxed{\begin{array}{c} 0 & 2 & 1 & 2 \\ 12 & 2544 \\ \underline{24} \\ 14 \\ 12 \\ 12 \\ 14 \\ 12 \\ 12 \\ 12 \\ 14 \\ 12 \\ 12$
appropriate for the context		After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remainder.	$\begin{array}{r} 12\\ 24\\ 24\\ 0\end{array}$

Key vocabulary for division:

share, group, divide by, half

Mental Expectations for Multiplication and Division

By the end of the year	<u>1</u>	2	<u>3</u>	4	5	<u>6</u>
-children are able to derive and recall	 doubles of all numbers to 10, e.g. double 6 odd and even numbers to 20 	 doubles of all numbers to 20, e.g. double 13, and corresponding halves doubles of multiples of 10 to 50, e.g. double 40, and corresponding halves multiplication facts for the 2, 5 and 10 times-tables, and corresponding division fm,acts odd and even numbers to 100 	 multiplication facts for the 2, 3, 4, 5, 6 and 10 times-tables, and corresponding division facts doubles of multiples of 10 to 100, e.g. double 90, and corresponding halves 	 multiplication facts to 10 × 10 and the corresponding division facts doubles of numbers 1 to 100, e.g. double 58, and corresponding halves doubles of multiples of 10 and 100 and corresponding halves fraction and decimal equivalents of one- half, quarters, tenths and hundredths, e.g. 310 is 0.3 and 3100 is 0.03 factor pairs for known multiplication facts 	 squares to 10 × 10 division facts corresponding to tables up to 10 × 10, and the related unit fractions, e.g. 7 × 9 = 63 so one-ninth of 63 is 7 and one-seventh of 63 is 9 percentage equivalents of one- half, one-quarter, three-quarters, tenths and hundredths factor pairs to 100 	 squares to 12 × 12 squares of the corresponding multiples of 10 prime numbers less than 100 equivalent fractions, decimals and percentages for hundredths, e.g. 35% is equivalent to 0.35 or 35/100

-working mentally (with jottings where necessary)	count on from and back to zero in ones, twos, fives or tens	 double any multiple of 5 up to 50, e.g. double 35 halve any multiple of 10 up to 100, e.g. halve 90 find half of even numbers to 40 find the total number of objects when they are organised into groups of 2, 5 or 10 	 double any multiple of 5 up to 100, e.g. double 35 halve any multiple of 10 up to 200, e.g. halve 170 multiply one-digit or two-digit numbers by 10 or 100, e.g. 7 × 100, 46 × 10, 54 x 100 find unit fractions of numbers and quantities involving halves, thirds, quarters, fifths and tenths 	 double any two-digit number, e.g. double 39 double any multiple of 10 or 100, e.g. double 340, double 800, and halve the corresponding multiples of 10 and 100 halve any even number to 200 find unit fractions and simple non-unit fractions of numbers and quantities, e.g. 38 of 24 multiply and divide numbers to 1000 by 10 and then 100 (whole-number answers), e.g. 325 × 10, 42 × 100, 120 ÷ 10, 600 ÷ 100, 850 ÷ 10 multiply a multiple of 10 to 100 by a single- digit number, e.g. 40 × 3 multiply numbers to 20 by a single-digit, e.g. 17 × 3 identify the remainder when dividing by 2, 5 or 10 give the factor pair associated with a multiplication fact, e.g. identify that if 2 	 multiply and divide two-digit numbers by 4 or 8, e.g. 26 × 4, 96 ÷ 8 multiply two-digit numbers by 5 or 20, e.g. 320 × 5, 14 × 20 multiply by 25 or 50, e.g. 48 × 25, 32 × 50 double three-digit multiples of 10 to 500, e.g. 380 × 2, and find the corresponding halves, e.g. 760 ÷ 2 find the remainder after dividing a two- digit number by a single-digit number, e.g. 27 ÷ 4 = 6 R 3 multiply and divide whole numbers and decimals by 10, 100 or 1000, e.g. 4.3 × 10, 0.75 × 100, 25 ÷ 10, 673 ÷ 100, 74 ÷ 100 multiply pairs of multiples of 10, e.g. 60 × 30, and a multiple of 100 by a single digit number, e.g. 900 × 8 divide a multiple of 10 by a single-digit number (whole number answers) e.g. 80 ÷ 4, 270 ÷ 3 find fractions of whole numbers or quantities, e.g. 	 multiply pairs of two-digit and single-digit numbers, e.g. 28 × 3 divide a two-digit number by a single-digit number, e.g. 68 ÷ 4 divide by 25 or 50, e.g. 480 ÷ 25, 3200 ÷ 50 double decimals with units and tenths, e.g. double 7.6, and find the corresponding halves, e.g. half of 15.2 multiply pairs of multiples of 10 and 100, e.g. 50 × 30, 600 × 20 divide multiples of 10 and 100, e.g. 50 × 30, 600 × 20 divide multiples of 10 or 100 (whole number answers), e.g. 600 ÷ 20, 800 ÷ 400, 2100 ÷ 300 multiply and divide two-digit decimals such as 0.8 × 7, 4.8 ÷ 6 find 10% or multiples of 10%, of whole numbers and quantities, e.g. 30% of 50 ml, 40% of £30, 70% of 200 g simplify fractions by cancelling scale up and down using known facts,
---	---	---	--	---	--	--

26 | Calculation Policy, December 2023

				x 3 = 6 then 6 has the factor pair 2 and 3	 23 of 27, 45 of 70 kg find 50%, 25% or 10% of whole numbers or quantities, e.g. 25% of 20 kg, 10% of £80 find factor pairs for numbers to 100, e.g. 30 has the factor pairs 1 × 30, 2 × 15, 3 × 10 and 5 × 6 	 e.g. given that three oranges cost 24p, find the cost of four oranges identify numbers with odd and even numbers of factors and no factor pairs other than 1 and themselves
-understand when to be able to apply	 use patterns of last digits, e.g. 0 and 5 when counting in fives 	 partition: double the tens and ones separately, then recombine use knowledge that halving is the inverse of doubling and that doubling is equivalent to multiplying by two use knowledge of multiplication facts from the 2, 5 and 10 times-tables, e.g. recognise that there are 15 objects altogether because there are three groups of five 	 partition: when doubling, double the tens and ones separately, then recombine partition: when halving, halve the tens and ones separately, then recombine use knowledge that halving and doubling are inverse operations recognise that finding a unit fraction is equivalent to dividing by the denominator and use knowledge of division facts recognise that when multiplying by 10 or 100 the digits move one or two places to the left and zero is used as a place holder 	 partition: double or halve the tens and ones separately, then recombine use understanding that when a number is multiplied or divided by 10 or 100, its digits move one or two places to the left or the right and zero is used as a place holder use knowledge of multiplication facts and place value, e.g. 7 x 8 = 56 to find 70 x 8, 7 x 80 use partitioning and the distributive law to multiply, e.g. 13 x 4 = (10 x 4) + (3 x 4)= 40 + 12 = 52 	 multiply or divide by 4 or 8 by repeated doubling or halving form an equivalent calculation, e.g. to multiply by 5, multiply by 10, then halve; to multiply by 20, double, then multiply by 10 use knowledge of doubles/halves and understanding of place value, e.g. when multiplying by 50 multiply by 100 and divide by 2 use knowledge of division facts, e.g. when carrying out a division to find a remainder use understanding that when a number is multiplied or divided by 10 or 100, its digits move one or two places to the left or the right relative to the decimal point, 	 partition: use partitioning and the distributive law to divide tens and ones separately, e.g. 92 ÷ 4 = (80 + 12) ÷ 4 = 20 + 3 = 23 form an equivalent calculation, e.g. to divide by 25, divide by 100, then multiply by 4; to divide by 50, divide by 100, then double use knowledge of the equivalence between fractions and percentages and the relationship between fractions and division recognise how to scale up or down using multiplication and division, e.g. if three oranges cost 24p: one orange costs 24 ÷ 3 = 8p

27 | Calculation Policy, December 2023

		pla • us mu div un pla wh wi • us eq fra pe fin 10 • us mu	e knowledge of ultiplication and	 four oranges cost 8 × 4 = 32p Use knowledge of multiplication and division facts to identify factor pairs and numbers with only two factors
		div	ultiplication and vision facts to find ctor pairs	

Appendix 1

Subtraction subtrahend minuend (The number that is taken (The larger away from the minuend) number that the 22 = 31subtrahend is subtracted from) difference operator (The amount remaining after a subtraction calculation)

Division dividend divisor (The number of groups (The larger number that is being separated into smaller groups) that the dividend is being separated into) quotient operator (The number of items in each group) 32 | Calculation Policy, December 2023